Knowledge Graphs 2021: The great (graph) convergence

Jesús Barrasa Neo4j

Jesús Barrasa

Director of SE EMEA

@Barrasadv / jesus@neo4j.com

PhD in RDB to RDF mapping (2007)

6 Years at Ontology (UK)

2Y Stint at data virtualization: Denodo

Last 6 years: Neo4j

The neosemantics project

Graphs4Good in the times of COVID

Covid*Graph

Project Domino

https://www.icij.org/investigations/fincen-files/global-banks-defy-u-s-crackdowns-by-serving-oligarchs-criminals-and-terrorists

The Great graph Convergence

converge verb

con·verge | \ kən-'vərj • \

converged; converging

Definition of *converge*

intransitive verb

- 1 : to tend or move toward one point or one another: come together: MEET // converging paths// Police cars converged on the accident scene.
- 2 : to come together and unite in a common interest or focus// Economic forces converged to bring the country out of the recession.
- 3 : to approach a limit as the number of terms increases without limit // the series *converges*

Huge interest in graph ML

2

Renewed interest in RDF/ semantics

Commercial Graphs market growth

Huge interest in graph ML

Renewed interest in RDF/ Semantics

Gartner

How to Build Knowledge Graphs That Enable Al-Driven Enterprise Applications

- Take an agile approach to ontology and knowledge graph development to decrease time to value.
- Support a minimum viable graph (MVG) approach by incorporating machine learning techniques.

Gartner Identifies Top 10 Data and Analytics Technology Trends for 2021

Trend 8: Graph Relates Everything

Gartner predicts that by 2025, graph technologies will be used in 80% of data and analytics innovations, up from 10% in 2021, facilitating rapid decision making across the organization.

Commercial Graphs market growth

https://db-engines.com/en/ranking categories

The trends come from different directions

Interope rability

And explicit semantics, of course, but targeted interoperability: ER

Better predictions

Graph features turn out to be significantly more predictive than attributes

Graph manage ment

Shortest path to building a graph based solution both operational or analytical

Context: How do property graphs relate to RDF graphs?

GRAPH = VERTICES + EDGES

RDF statements (triples)

ppl://ann is a person
ppl//ann user ID is @ann
ppl://ann name is Ann Smith
ppl://dan likes ppl://ann

PG connected objects (with properties)

There is a person that is described by her name: Ann, her user ID: @ann and a globally unique identifier: <ppl://ann>

There is another person with a unique identifier: <ppl://dan>

Dan likes Ann

PG

Any RDF graph can be automatically imported into a PG DB in a **lossless** manner **Any Property** Graph can be automatically serialised as RDF (or RDF*) in a lossless manner.

So there are really no diffs?

Just minor ones

- Property Graphs identify relationships (edges) uniquely
 - (some kind of native implementation of the singleton property http://dl.acm.org/citation.cfm?id=2567973)
- Multivalued properties are arrays/collections

Context: How do property graphs relate to RDF graphs?

SPARQL

```
prefix ms: <http://myschma.me/>
prefix rdf: <http://www[...]#>

SELECT ?who
{
    ?a a ms:Person .
    ?a ms:name ?asName .
    FILTER regex(?asName,'Ann')
    ?who ms:likes ?a .
}
```

Cypher

```
MATCH (who)-[:LIKES]->(a:Person)
WHERE a.name CONTAINS 'Ann'
RETURN who
```

A query: Who likes this person named Ann?

Context: How do property graphs relate to RDF graphs?

Integrity: ACID?

Storage: Native, RDB, NoSQL

Clustering: Consistency level

Workloads: Deep traversals, Algorithms.

Licensing & Support

Open/closed Source

Tech stack / integrations / architectures

Are we still Knowledge Graphs?

AKG is...

It's up to you really... here's an idea

How are Knowledge Graphs built with Neo4j?

KG construction

Purely pragmatic: Start from the end. Keep usage in mind... Iterate

Query perf considerations. Model evolution, etc... change!

Then remodelling for analytics.

Monopartite, bipartite... views on KG

Observation#1

KG construction is largely an engineering task

- Important (huge) investment in modelling trainings
- (change!) Model Refactoring...
- Things are different on the consuming side (graphs help, at least via visual exploration)

Observation#2

Model reuse is (close to) non-existent

- There's no such thing as a library of public
 Property Graph models
- What does a PG "ontology" look like? -> The multilayered network example.

The social network

Shortest/most efficient path from A to B Find diverse routes between A and B

The organization

The loaders and the "inferencing" on the model

```
CALL apoc.load.(json|xml|csv|...) ...

MERGE (aN:NE { neId: $aNeId}), (zN:NE { neId: $zNeId})

MERGE (aN)<-[:CONNECT]-(l:Link)-[:CONNECT]->(zN) WITH 1
```

```
CALL nm.spof("123-sdh","317-sdh")

CALL nm.disjoint(2,"n-1","n-7", <max-cost>)

CALL nm.rca(["593-sdh","627-sdh","114-sdh",...])

...
```

Observation#3

KG construction is augmented by automation (Graph Algos, ML...)

- Taxonomies "learnt" from the data.
 - Similarity algorithms
- Formalised as overlay ontologies
- Used to drive query expansion, similarity analysis, recommendation...

Observation#4

(private) KG construction use fragments of public KGs

- Wikidata
- Public ontologies

Example: Tutorial- Building a KG using NLP and Ontologies

https://neo4j.com/developer/graph-data-science/build-knowledge-graph-nlp-ontologies/

n10s: RDF vs and PG

There's no 'standard' property graph serialisation format. Wait a minute...

- Cloning a subgraph had to be done using scripting (cypher).
- RDF (kind of) did the job. RDF* makes it a lot easier

There's a lot of valuable (RDF) graph data out there.

- Do I really need to flatten it before I make it a graph again in my DB?
- RDF endpoints + SPARQL CONSTRUCT is your friend.

n10s: The bidirectional conversion

Take a triple...

- object is a Literal
 - a node with a property (deal with datatypes, lang tags, multivals, etc.)
- object is a resource
 - two nodes and a relationship
- predicate is *rdf:type*
 - a node with a label (optionally)

http://www.w3.org/1999/02/22-rdf-syntax-ns#type> http://www.w3.org/2000/01/rdf-schema#label http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wikidata.org/entity/Q84263196>http://www.wik http://www.w3.org/1999/02/22-rdf-syntax-ns#type> http://www.w3.org/2000/01/rdf-schema#label

- http://www.wikidata.org/category/Disease "COVID-19".
- http://www.wikidata.org/category/Disease "Atypical pneumonia".

Enter neosemantics: n10s

n10s is a plugin that enables the use of RDF in Neo4j

- Import and store RDF data in Neo4j in a lossless manner
- On-demand export property graph data from Neo4j as RDF
- model mapping
- Graph data validation based on SHACL shapes /constraints
- (limited) Inferencing

https://neo4j.com/labs/neosemantics

n10s in some key figures

5 Yrs

First commit in April 2016. **14 contributors** 50% are Neo4j staff.

24.8K

Downloads of neosemantics as of June 5th 2021.

526★

Top 20 actively maintained RDF projects on GitHub

n10s community

https://community.neo4j.com/c/integrations/linked-data-rdf-ontology/1 62

https://github.com/neo4j-labs/neosemantics/issues

N10s satellite projects: rdflib-neo4j

```
import rdflib
# create a neo4i backed Graph
g = rdflib.Graph(store='Neo4j')
# set the configuration to connect to your Neo4i DB
theconfiq = {'uri': "neo4j://localhost:7687", 'database': 'rdfstore', 'auth': {'user': "neo4j", 'pwc
g.open(theconfig, create = False)
q.load("https://raw.githubusercontent.com/jbarrasa/datasets/master/rdf/music.nt", format="nt")
# For each foaf:Person in the store, print out their mbox property's value.
print("--- printing band's names ---")
for band in q.subjects(rdflib.RDF.type, rdflib.URIRef("http://neo4j.com/voc/music#Band")):
    for bandName in g.objects(band, rdflib.URIRef("http://neo4j.com/voc/music#name")):
        print(bandName)
MUSIC = rdflib.Namespace("http://neo4j.com/voc/music#")
fm = rdflib.URIRef("http://neo4j.com/indiv#Fleetwood_Mac")
```

```
MUSIC = rdflib.Namespace("http://neo4j.com/voc/music#")
fm = rdflib.URIRef("http://neo4j.com/indiv#Fleetwood_Mac")

g.add((fm, rdflib.RDF.type, MUSIC.Band))
g.add((fm, MUSIC.name, rdflib.Literal("Fleetwood Mac")))
```


An RDFLib Store backed by neo4j + n10s

We are convinced of the value of making semantics explicit

- Automation is central to the creation of ontologies. Without it it's close to pointless.
- Making the data smarter

But the sad reality is that the understanding of semantics outside the academic community is very poor

- People get SHACL validations... but not OWL inference
- Maybe that's the right path?

The SHACL approach

SHACL core

DASH Constraints (http://datashapes.org/constraints.html)

dash:coExistsWith

dash:subSetOf

Defined by TopQuadrant, supported by Ontotext

Takeaways

Updated from the version presented based on Christophe Debruyne's question ;-)

- Let's keep making data smarter together. Your contribution is welcome
 - Successful precedents: eccenca
- KG adoption in industry is in its infancy, we have a great future ahead of us.
- Call to action: be curious and spin up a Neo4j sandbox(*) and do RDF!

"It's all graphs!"

Juan Sequeda

(*) https://sandbox.neo4j.com/

Thank you!

