Everything for the Users, Nothing by the Users

Lessons Learnt From a Heterogeneous Data Mapping Languages User Study

Herminio García González - garciaheminio@uniovi.es - @herminio_gg
Introduction

Why usability?

• Declarative mapping rules
• Faster and more flexible process
• Less time and resources
• Some exiting languages claim to be user friendly
 • YARRRML and ShExML
• Others to be easy to learn by semantic web experts
 • SPARQL-Generate

Final goal: to ease users’ workflow

Not quantified
Introduction

More on Why usability? The recent change of perspective

• Semantic Web community used to center on new features and technical improvements
 • Historical analogy -> Enlightened Despotism
 • “Everything for the users, nothing by the users”
• Recent trends claim to develop more user-centric approaches
 • Understand users
 • Improve their productivity
• A huge analysis tool to decide future actions on a topic
Introduction

Our usability experiment

• TTBOMK, only our recent study [1] has tackled this aspect for heterogeneous data mapping languages

• We briefly summarise and explain it

• From its outcomes we envisage next actions in the community

• To better understand and address users’ problems

Brief Experiment Description
Brief experiment description

Language selection criteria

• Languages which goal is to be user friendly
• SPARQL-Generate, YARRRML and ShExML
• Why not to include RDF-based syntax approaches?
• Verbosity (solutions are much longer)
• Therefore, similar syntax in terms of verbosity

Not fair and a bias from the beginning!!!
Brief experiment description

Methodology

• Mixed-method approach
 • Quantitative (objective variables measure: behavioural and performance metrics)
 • Qualitative (subjectives variables measure: users’ perceptions)
 • Qualitative results can give a better understanding of quantitative results
• 20 students (randomly assigned to languages) of MSc in Web Engineering
 • Semantic web course (RDF, SPARQL, ShEx, etc.)
 • Task 1: Generate mapping rules given inputs and a desired output
 • Task 2: Modify the previously generated mapping rules to match a new output

First-time users with some background knowledge
Results & Highlights

Statistical results

• Statistical analysis (hypothesis testing) with pair-wise comparisons
 • Task 1 - Quantitative analysis
 • Significant differences on:
 • Elapsed seconds (ShExML and YARRRML)
 • Completeness percentage and precision (ShExML and SPARQL-Generate)
 • No significant differences on:
 • Keystrokes (no difference in language verbosity)
 • Left & Right button clicks, mouse wheel scroll and meters traveled by the mouse (Similar web playground)

⚠️ We’ll come back later to this
Results & Highlights

Statistical results

• Task 1 - Qualitative analysis
 • Significant differences on:
 • General satisfaction & Easiness of use (ShExML and YARRRML)
 • Learnability & Mapping definition easiness (ShExML and both other languages)
 • Differences align with quantitative ones:
 • Difficulties in SPARQL-Generate -> Worse learnability and mapping definitions easiness
 • More time consumed with YARRRML -> Lower levels on general satisfaction and easiness of use
Results & Highlights

Statistical results

• Task 2:
 • No significant differences due to low sample sizes (6 for ShExML & 1 for YARRRML)
 • Modifiability: 5 by 83% of the ShExML users, 3 by the only YARRRML user
 • SPARQL-Generate users didn’t reach this task due to difficulties to finish the first one
Results & Highlights

Discussion

• SPARQL-Generate -> Its design is having a bad effect on first-time users -> Difficult to use and learn
• ShExML & YARRRML -> Where’s the difference?
 • Hypothesis: Difference in syntax
• Bad scores in the three languages -> Call to action!!!!
 • Language design lead to commit errors
 • Bad error reporting systems
 • No applicability
Actions To Take
Actions to take

Outputs from the experiment

• Take care of how new features are added and designed in languages
 • Avoid bad impact on usability and learnability
• Take care of badly scored variables in the three languages
• Applicability & Learnability on first-time users -> Adoption!!!
• Semantic Web community
 • Focused in new features and technical improvements
 • Need to develop more user-centric approaches (new and recent shift of paradigm)
Actions to take

Methodological tools

• Stronger methods to support our hypothesis and conclusions
 • In our study -> Statistical hypothesis testing, why?
 • Avoid erroneous conclusions
 • Corroborate that our findings were not obtained just by chance
 • Take into account the variance
 • Measure the evidence strength (effect size)
Actions to take

Methodological tools

• Example from our data
• Precision variable
 • ShExML mean: 0.495
 • YARRRML mean: 0.131
• Intuitively ShExML users are more precise
• Statistically they are not!!!
 • Why?

Variance!!!
Actions to take

More studies

- We only covered first-time users with some background knowledge
- More profiles -> Whole perspective
- We also have to compare visual and non-visual approaches
- Discern preferences by profiles
- Differences in syntax
- Experiments that come closer to users’ mental processes
 - One possibility: Cognitive models and frameworks
 - Deliver explanations to empirical studies
Conclusions
Conclusions

And take-home lessons

• Focus on users, understand them and take care of their needs (put them in the center)
• Recent trend in the Semantic Web community
• Example of an heterogeneous data mapping languages study and its outcomes
 • Take care of features design!
 • Do more experiments!
• Involve users!
• Use strong methodological and analysis systems (statistics are an ally not an enemy)
 • Learn from other scientific fields
Everything for the Users, Nothing by the Users

Lessons Learnt From a Heterogeneous Data Mapping Languages User Study

Herminio García González - garciaherminio@uniovi.es - @herminio_gg